arXiv Analytics

Sign in

arXiv:2007.00069 [math.AP]AbstractReferencesReviewsResources

On stable and finite Morse index solutions of the fractional Toda system

Mostafa Fazly, Wen Yang

Published 2020-06-30Version 1

We develop a monotonicity formula for solutions of the fractional Toda system $$ (-\Delta)^s f_\alpha = e^{-(f_{\alpha+1}-f_\alpha)} - e^{-(f_\alpha-f_{\alpha-1})} \quad \text{in} \ \ \mathbb R^n,$$ when $0<s<1$, $\alpha=1,\cdots,Q$, $f_0=-\infty$, $f_{Q+1}=\infty$ and $Q \ge2$ is the number of equations in this system. We then apply this formula, technical integral estimates, classification of stable homogeneous solutions, and blow-down analysis arguments to establish Liouville type theorems for finite Morse index (and stable) solutions of the above system when $n > 2s$ and $$ \dfrac{\Gamma(\frac{n}{2})\Gamma(1+s)}{\Gamma(\frac{n-2s}{2})} \frac{Q(Q-1)}{2} > \frac{ \Gamma(\frac{n+2s}{4})^2 }{ \Gamma(\frac{n-2s}{4})^2} . $$ Here, $\Gamma$ is the Gamma function. When $Q=2$, the above equation is the classical (fractional) Gelfand-Liouville equation.

Related articles: Most relevant | Search more
arXiv:2008.07374 [math.AP] (Published 2020-08-17)
On stable and finite Morse index solutions of the nonlocal Hénon-Gelfand-Liouville equation
arXiv:2505.08702 [math.AP] (Published 2025-05-13)
Uniformly boundedness of finite Morse index solutions to semilinear elliptic equations with rapidly growing nonlinearities in two dimensions
arXiv:1506.00491 [math.AP] (Published 2015-06-01)
The structure of finite Morse index solutions to two free boundary problems in $\R^2$