{ "id": "2007.00069", "version": "v1", "published": "2020-06-30T19:22:59.000Z", "updated": "2020-06-30T19:22:59.000Z", "title": "On stable and finite Morse index solutions of the fractional Toda system", "authors": [ "Mostafa Fazly", "Wen Yang" ], "comment": "21 pages. Comments are welcome", "categories": [ "math.AP" ], "abstract": "We develop a monotonicity formula for solutions of the fractional Toda system $$ (-\\Delta)^s f_\\alpha = e^{-(f_{\\alpha+1}-f_\\alpha)} - e^{-(f_\\alpha-f_{\\alpha-1})} \\quad \\text{in} \\ \\ \\mathbb R^n,$$ when $0 2s$ and $$ \\dfrac{\\Gamma(\\frac{n}{2})\\Gamma(1+s)}{\\Gamma(\\frac{n-2s}{2})} \\frac{Q(Q-1)}{2} > \\frac{ \\Gamma(\\frac{n+2s}{4})^2 }{ \\Gamma(\\frac{n-2s}{4})^2} . $$ Here, $\\Gamma$ is the Gamma function. When $Q=2$, the above equation is the classical (fractional) Gelfand-Liouville equation.", "revisions": [ { "version": "v1", "updated": "2020-06-30T19:22:59.000Z" } ], "analyses": { "keywords": [ "finite morse index solutions", "fractional toda system", "establish liouville type theorems", "blow-down analysis arguments", "technical integral estimates" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }