arXiv:2008.06675 [math.NT]AbstractReferencesReviewsResources
A $p$-adic analogue of Chan and Verrill's formula for $1/π$
Published 2020-08-15Version 1
We prove three supercongruences for sums of Almkvist-Zudilin numbers, which confirm some conjectures of Zudilin and Z.-H. Sun. A typical example is the Ramanujan-type supercongruence: \begin{align*} \sum_{k=0}^{p-1} \frac{4k+1}{81^k}\gamma_k \equiv \left(\frac{-3}{p}\right) p\pmod{p^3}, \end{align*} which is corresponding to Chan and Verrill's formula for $1/\pi$: \begin{align*} \sum_{k=0}^\infty \frac{4k+1}{81^k}\gamma_k = \frac{3\sqrt{3}}{2\pi}. \end{align*} Here $\gamma_n$ are the Almkvist-Zudilin numbers.
Comments: 12 pages
Related articles: Most relevant | Search more
arXiv:2002.12072 [math.NT] (Published 2020-02-27)
Super congruences concerning binomial coefficients and Apéry-like numbers
arXiv:1506.08437 [math.NT] (Published 2015-06-28)
Supercongruences for the Almkvist-Zudilin numbers
arXiv:2008.02647 [math.NT] (Published 2020-08-06)
Supercongruences for sums involving Domb numbers