arXiv:2002.12072 [math.NT]AbstractReferencesReviewsResources
Super congruences concerning binomial coefficients and Apéry-like numbers
Published 2020-02-27Version 1
Let $p$ be a prime with $p>3$, and let $a,b$ be two rational $p-$integers. In this paper we present general congruences for $\sum_{k=0}^{p-1}\binom ak\binom{-1-a}k\frac p{k+b}\pmod {p^2}$. For $n=0,1,2,\ldots$ let $D_n$ and $b_n$ be Domb and Almkvist-Zudilin numbers, respectively. We also establish congruences for $$\sum_{n=0}^{p-1}\frac{D_n}{16^n},\quad \sum_{n=0}^{p-1}\frac{D_n}{4^n}, \quad \sum_{n=0}^{p-1}\frac{b_n}{(-3)^n},\quad \sum_{n=0}^{p-1}\frac{b_n}{(-27)^n}\pmod {p^2}$$ in terms of certain binary quadratic forms.
Comments: 35 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2004.07172 [math.NT] (Published 2020-04-15)
New congruences involving Apéry-like numbers
arXiv:2403.19503 [math.NT] (Published 2024-03-28)
Supercongruences involving Apéry-like numbers and Bernoulli numbers
Congruences for Apéry-like numbers