{ "id": "2002.12072", "version": "v1", "published": "2020-02-27T13:02:50.000Z", "updated": "2020-02-27T13:02:50.000Z", "title": "Super congruences concerning binomial coefficients and Apéry-like numbers", "authors": [ "Zhi-Hong Sun" ], "comment": "35 pages", "categories": [ "math.NT" ], "abstract": "Let $p$ be a prime with $p>3$, and let $a,b$ be two rational $p-$integers. In this paper we present general congruences for $\\sum_{k=0}^{p-1}\\binom ak\\binom{-1-a}k\\frac p{k+b}\\pmod {p^2}$. For $n=0,1,2,\\ldots$ let $D_n$ and $b_n$ be Domb and Almkvist-Zudilin numbers, respectively. We also establish congruences for $$\\sum_{n=0}^{p-1}\\frac{D_n}{16^n},\\quad \\sum_{n=0}^{p-1}\\frac{D_n}{4^n}, \\quad \\sum_{n=0}^{p-1}\\frac{b_n}{(-3)^n},\\quad \\sum_{n=0}^{p-1}\\frac{b_n}{(-27)^n}\\pmod {p^2}$$ in terms of certain binary quadratic forms.", "revisions": [ { "version": "v1", "updated": "2020-02-27T13:02:50.000Z" } ], "analyses": { "subjects": [ "11A07", "05A19", "11B65", "11E25" ], "keywords": [ "super congruences concerning binomial coefficients", "apéry-like numbers", "binary quadratic forms", "almkvist-zudilin numbers", "general congruences" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }