{ "id": "2008.06675", "version": "v1", "published": "2020-08-15T08:20:58.000Z", "updated": "2020-08-15T08:20:58.000Z", "title": "A $p$-adic analogue of Chan and Verrill's formula for $1/π$", "authors": [ "Ji-Cai Liu" ], "comment": "12 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "We prove three supercongruences for sums of Almkvist-Zudilin numbers, which confirm some conjectures of Zudilin and Z.-H. Sun. A typical example is the Ramanujan-type supercongruence: \\begin{align*} \\sum_{k=0}^{p-1} \\frac{4k+1}{81^k}\\gamma_k \\equiv \\left(\\frac{-3}{p}\\right) p\\pmod{p^3}, \\end{align*} which is corresponding to Chan and Verrill's formula for $1/\\pi$: \\begin{align*} \\sum_{k=0}^\\infty \\frac{4k+1}{81^k}\\gamma_k = \\frac{3\\sqrt{3}}{2\\pi}. \\end{align*} Here $\\gamma_n$ are the Almkvist-Zudilin numbers.", "revisions": [ { "version": "v1", "updated": "2020-08-15T08:20:58.000Z" } ], "analyses": { "subjects": [ "11A07", "11B65", "11Y55", "05A19" ], "keywords": [ "verrills formula", "adic analogue", "almkvist-zudilin numbers", "ramanujan-type supercongruence" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }