arXiv Analytics

Sign in

arXiv:2008.01678 [math.NT]AbstractReferencesReviewsResources

Distinct distances on hyperbolic surfaces

Xianchang Meng

Published 2020-08-04Version 1

For any cofinite Fuchsian group $\Gamma\subset {\rm PSL}(2, \mathbb{R})$, we show that any set of $N$ points on the hyperbolic surface $\Gamma\backslash\mathbb{H}^2$ determines $\geq C_{\Gamma} \frac{N}{\log N}$ distinct distances for some constant $C_{\Gamma}>0$ depending only on $\Gamma$. In particular, for $\Gamma$ being any finite index subgroup of ${\rm PSL}(2, \mathbb{Z})$ with $\mu=[{\rm PSL}(2, \mathbb{Z}): \Gamma ]<\infty$, any set of $N$ points on $\Gamma\backslash\mathbb{H}^2$ determines $\geq C\frac{N}{\mu\log N}$ distinct distances for some absolute constant $C>0$.

Related articles: Most relevant | Search more
arXiv:2309.08472 [math.NT] (Published 2023-09-15)
A naive p-adic height on the Jacobians of curves of genus 2
arXiv:1608.06401 [math.NT] (Published 2016-08-23)
Distinct distances on regular varieties over finite fields
arXiv:1904.08033 [math.NT] (Published 2019-04-17)
The module of vector-valued modular forms is Cohen-Macaulay