{ "id": "2008.01678", "version": "v1", "published": "2020-08-04T16:27:23.000Z", "updated": "2020-08-04T16:27:23.000Z", "title": "Distinct distances on hyperbolic surfaces", "authors": [ "Xianchang Meng" ], "categories": [ "math.NT" ], "abstract": "For any cofinite Fuchsian group $\\Gamma\\subset {\\rm PSL}(2, \\mathbb{R})$, we show that any set of $N$ points on the hyperbolic surface $\\Gamma\\backslash\\mathbb{H}^2$ determines $\\geq C_{\\Gamma} \\frac{N}{\\log N}$ distinct distances for some constant $C_{\\Gamma}>0$ depending only on $\\Gamma$. In particular, for $\\Gamma$ being any finite index subgroup of ${\\rm PSL}(2, \\mathbb{Z})$ with $\\mu=[{\\rm PSL}(2, \\mathbb{Z}): \\Gamma ]<\\infty$, any set of $N$ points on $\\Gamma\\backslash\\mathbb{H}^2$ determines $\\geq C\\frac{N}{\\mu\\log N}$ distinct distances for some absolute constant $C>0$.", "revisions": [ { "version": "v1", "updated": "2020-08-04T16:27:23.000Z" } ], "analyses": { "subjects": [ "52C10", "11P21", "11F06" ], "keywords": [ "distinct distances", "hyperbolic surface", "finite index subgroup", "cofinite fuchsian group", "determines" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }