arXiv Analytics

Sign in

arXiv:1608.06401 [math.NT]AbstractReferencesReviewsResources

Distinct distances on regular varieties over finite fields

Pham Van Thang, Do Duy Hieu

Published 2016-08-23Version 1

In this paper we study some generalized versions of a recent result due to Covert, Koh, and Pi (2015). More precisely, we prove that if a subset $\mathcal{E}$ in a regular variety satisfies $|\mathcal{E}|\gg q^{\frac{d-1}{2}+\frac{1}{k-1}}$, then $\Delta_{k, F}(\mathcal{E})\supseteq \mathbb{F}_q\setminus \{0\}$ for some certain families of polynomials $F(\mathbf{x})\in \mathbb{F}_q[x_1, \ldots, x_d]$.

Related articles: Most relevant | Search more
arXiv:1403.4070 [math.NT] (Published 2014-03-17, updated 2014-11-19)
An Exponential Sum and Higher-Codimensional Subvarieties of Projective Spaces over Finite Fields
arXiv:2008.01678 [math.NT] (Published 2020-08-04)
Distinct distances on hyperbolic surfaces
arXiv:1107.4565 [math.NT] (Published 2011-07-22, updated 2011-08-30)
Graphs associated with the map $x \mapsto x+x^{-1}$ in finite fields of characteristic two