{ "id": "1608.06401", "version": "v1", "published": "2016-08-23T07:00:35.000Z", "updated": "2016-08-23T07:00:35.000Z", "title": "Distinct distances on regular varieties over finite fields", "authors": [ "Pham Van Thang", "Do Duy Hieu" ], "categories": [ "math.NT" ], "abstract": "In this paper we study some generalized versions of a recent result due to Covert, Koh, and Pi (2015). More precisely, we prove that if a subset $\\mathcal{E}$ in a regular variety satisfies $|\\mathcal{E}|\\gg q^{\\frac{d-1}{2}+\\frac{1}{k-1}}$, then $\\Delta_{k, F}(\\mathcal{E})\\supseteq \\mathbb{F}_q\\setminus \\{0\\}$ for some certain families of polynomials $F(\\mathbf{x})\\in \\mathbb{F}_q[x_1, \\ldots, x_d]$.", "revisions": [ { "version": "v1", "updated": "2016-08-23T07:00:35.000Z" } ], "analyses": { "keywords": [ "finite fields", "distinct distances", "regular variety satisfies", "polynomials", "generalized versions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }