arXiv:2006.11045 [math.FA]AbstractReferencesReviewsResources
Riesz means on locally symmetric spaces
Published 2020-06-19Version 1
We prove that for a certain class of $n$ dimensional rank one locally symmetric spaces, if $f \in L^p$, $1\leq p \leq 2$, then the Riesz means of order $z$ of $f$ converge to $f$ almost everywhere, for $\operatorname{Re}z> (n-1)(1/p-1/2).$
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1909.00220 [math.FA] (Published 2019-08-31)
Riesz means on symmetric spaces
arXiv:0811.3087 [math.FA] (Published 2008-11-19)
L^p-summability of Riesz means for the sublaplacian on complex spheres
arXiv:0806.4761 [math.FA] (Published 2008-06-29)
About the almost everywhere convergence of the spectral expansions of functions from $L_1^\a(S^N)$