{ "id": "2006.11045", "version": "v1", "published": "2020-06-19T09:56:30.000Z", "updated": "2020-06-19T09:56:30.000Z", "title": "Riesz means on locally symmetric spaces", "authors": [ "Effie Papageorgiou" ], "categories": [ "math.FA" ], "abstract": "We prove that for a certain class of $n$ dimensional rank one locally symmetric spaces, if $f \\in L^p$, $1\\leq p \\leq 2$, then the Riesz means of order $z$ of $f$ converge to $f$ almost everywhere, for $\\operatorname{Re}z> (n-1)(1/p-1/2).$", "revisions": [ { "version": "v1", "updated": "2020-06-19T09:56:30.000Z" } ], "analyses": { "subjects": [ "42B15", "42B08", "22E30", "22E40" ], "keywords": [ "locally symmetric spaces", "riesz means", "dimensional rank" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }