arXiv Analytics

Sign in

arXiv:1909.00220 [math.FA]AbstractReferencesReviewsResources

Riesz means on symmetric spaces

Anestis Fotiadis, Michel Marias, Effie Papageorgiou

Published 2019-08-31Version 1

Let $X$ be a non-compact symmetric space of dimension $n$. We prove that if $f\in L^{p}(X)$, $1\leq p\leq 2$, then the Riesz means $S_{R}^{z}\left( f\right)$ converge to $f$ almost everywhere as $R\rightarrow \infty $, whenever $\operatorname{Re}z>\left( n-\frac{1}{2}\right) \left( \frac{2}{p}-1\right) $.

Categories: math.FA
Subjects: 42B15, 43A85, 22E30, 58G99
Related articles: Most relevant | Search more
arXiv:2006.11045 [math.FA] (Published 2020-06-19)
Riesz means on locally symmetric spaces
arXiv:1108.5634 [math.FA] (Published 2011-08-29)
Deconvolution of band limited functions on non-compact symmetric spaces
arXiv:0811.3087 [math.FA] (Published 2008-11-19)
L^p-summability of Riesz means for the sublaplacian on complex spheres