{ "id": "1909.00220", "version": "v1", "published": "2019-08-31T14:11:49.000Z", "updated": "2019-08-31T14:11:49.000Z", "title": "Riesz means on symmetric spaces", "authors": [ "Anestis Fotiadis", "Michel Marias", "Effie Papageorgiou" ], "categories": [ "math.FA" ], "abstract": "Let $X$ be a non-compact symmetric space of dimension $n$. We prove that if $f\\in L^{p}(X)$, $1\\leq p\\leq 2$, then the Riesz means $S_{R}^{z}\\left( f\\right)$ converge to $f$ almost everywhere as $R\\rightarrow \\infty $, whenever $\\operatorname{Re}z>\\left( n-\\frac{1}{2}\\right) \\left( \\frac{2}{p}-1\\right) $.", "revisions": [ { "version": "v1", "updated": "2019-08-31T14:11:49.000Z" } ], "analyses": { "subjects": [ "42B15", "43A85", "22E30", "58G99" ], "keywords": [ "riesz means", "non-compact symmetric space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }