arXiv:2005.10849 [math.CO]AbstractReferencesReviewsResources
On the cop number of graphs of high girth
Peter Bradshaw, Seyyed Aliasghar Hosseini, Bojan Mohar, Ladislav Stacho
Published 2020-05-21Version 1
We establish a lower bound for the cop number of graphs of high girth in terms of the minimum degree, and more generally, in terms of a certain growth condition. We show, in particular, that the cop number of any graph with girth $g$ and minimum degree $\delta$ is at least $\tfrac{1}{g}(\delta - 1)^{\lfloor \frac{g-1}{4}\rfloor}$. We establish similar results for directed graphs. While exposing several reasons for conjecturing that the exponent $\tfrac{1}{4}g$ in this lower bound cannot be improved to $(\tfrac{1}{4}+\varepsilon)g$, we are also able to prove that it cannot be increased beyond $\frac{3}{8}g$. This is established by considering a certain family of Ramanujan graphs. In our proof of this bound, we also show that the "weak" Meyniel's conjecture holds for expander graph families of bounded degree.