arXiv:1004.2482 [math.CO]AbstractReferencesReviewsResources
Variations on Cops and Robbers
Alan Frieze, Michael Krivelevich, Po-Shen Loh
Published 2010-04-14Version 1
We consider several variants of the classical Cops and Robbers game. We treat the version where the robber can move R > 1 edges at a time, establishing a general upper bound of N / \alpha ^{(1-o(1))\sqrt{log_\alpha N}}, where \alpha = 1 + 1/R, thus generalizing the best known upper bound for the classical case R = 1 due to Lu and Peng. We also show that in this case, the cop number of an N-vertex graph can be as large as N^{1 - 1/(R-2)} for finite R, but linear in N if R is infinite. For R = 1, we study the directed graph version of the problem, and show that the cop number of any strongly connected digraph on N vertices is at most O(N(log log N)^2/log N). Our approach is based on expansion.