arXiv:2002.01076 [math.DS]AbstractReferencesReviewsResources
Möbius disjointness for $C^{1 + \varepsilon}$ skew products
Published 2020-02-04Version 1
We show that for $\varepsilon > 0$, every $C^{1 + \varepsilon}$ skew product on $\mathbb{T}^2$ over a rotation of $\mathbb{T}^1$ satisfies Sarnak's conjecture. This is an improvement of earlier results of Kulaga-Przymus-Lema\'nczyk, Huang-Wang-Ye and Kanigowski-Lema\'nczyk-Radziwill.
Comments: 16 pages
Related articles: Most relevant | Search more
arXiv:1905.13256 [math.DS] (Published 2019-05-30)
Rigidity in dynamics and Möbius disjointness
arXiv:1509.03183 [math.DS] (Published 2015-09-10)
Möbius disjointness for analytic skew products
arXiv:1608.08289 [math.DS] (Published 2016-08-30)
Möbius disjointness and mean-L-stability