{ "id": "2002.01076", "version": "v1", "published": "2020-02-04T01:18:47.000Z", "updated": "2020-02-04T01:18:47.000Z", "title": "Möbius disjointness for $C^{1 + \\varepsilon}$ skew products", "authors": [ "Alexandre de Faveri" ], "comment": "16 pages", "categories": [ "math.DS", "math.NT" ], "abstract": "We show that for $\\varepsilon > 0$, every $C^{1 + \\varepsilon}$ skew product on $\\mathbb{T}^2$ over a rotation of $\\mathbb{T}^1$ satisfies Sarnak's conjecture. This is an improvement of earlier results of Kulaga-Przymus-Lema\\'nczyk, Huang-Wang-Ye and Kanigowski-Lema\\'nczyk-Radziwill.", "revisions": [ { "version": "v1", "updated": "2020-02-04T01:18:47.000Z" } ], "analyses": { "subjects": [ "37A45", "11J70" ], "keywords": [ "skew product", "möbius disjointness", "satisfies sarnaks conjecture", "earlier results" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }