arXiv:1910.10932 [math.NT]AbstractReferencesReviewsResources
A common $q$-analogue of two supercongruences
Victor J. W. Guo, Wadim Zudilin
Published 2019-10-24Version 1
We give a $q$-congruence whose specializations $q=-1$ and $q=1$ correspond to supercongruences (B.2) and (H.2) on Van Hamme's 1997 list: $$ \sum_{k=0}^{(p-1)/2}(-1)^k(4k+1)A_k\equiv p(-1)^{(p-1)/2}\pmod{p^3} \quad\text{and}\quad \sum_{k=0}^{(p-1)/2}A_k\equiv a(p)\pmod{p^2}, $$ where $p>2$ is prime, $$ A_k=\prod_{j=0}^{k-1}\biggl(\frac{1/2+j}{1+j}\biggr)^3=\frac1{2^{6k}}{\binom{2k}k}^3 \quad\text{for}\ k=0,1,2,\dots, $$ and $a(p)$ is the $p$-th coefficient of (the weight 3 modular form) $q\prod_{j=1}^\infty(1-q^{4j})^6$. We complement our result with a general common $q$-congruence for related hypergeometric sums.
Comments: 9 pages
Related articles: Most relevant | Search more
Supercongruences motivated by e
arXiv:1803.01830 [math.NT] (Published 2018-03-05)
A $q$-microscope for supercongruences
Supercongruences for a truncated hypergeometric series