{ "id": "1910.10932", "version": "v1", "published": "2019-10-24T06:30:46.000Z", "updated": "2019-10-24T06:30:46.000Z", "title": "A common $q$-analogue of two supercongruences", "authors": [ "Victor J. W. Guo", "Wadim Zudilin" ], "comment": "9 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "We give a $q$-congruence whose specializations $q=-1$ and $q=1$ correspond to supercongruences (B.2) and (H.2) on Van Hamme's 1997 list: $$ \\sum_{k=0}^{(p-1)/2}(-1)^k(4k+1)A_k\\equiv p(-1)^{(p-1)/2}\\pmod{p^3} \\quad\\text{and}\\quad \\sum_{k=0}^{(p-1)/2}A_k\\equiv a(p)\\pmod{p^2}, $$ where $p>2$ is prime, $$ A_k=\\prod_{j=0}^{k-1}\\biggl(\\frac{1/2+j}{1+j}\\biggr)^3=\\frac1{2^{6k}}{\\binom{2k}k}^3 \\quad\\text{for}\\ k=0,1,2,\\dots, $$ and $a(p)$ is the $p$-th coefficient of (the weight 3 modular form) $q\\prod_{j=1}^\\infty(1-q^{4j})^6$. We complement our result with a general common $q$-congruence for related hypergeometric sums.", "revisions": [ { "version": "v1", "updated": "2019-10-24T06:30:46.000Z" } ], "analyses": { "subjects": [ "33D15", "11A07", "11B65" ], "keywords": [ "supercongruences", "van hammes", "th coefficient", "modular form", "general common" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }