arXiv:1011.3487 [math.NT]AbstractReferencesReviewsResources
Supercongruences motivated by e
Published 2010-11-15, updated 2015-02-26Version 8
In this paper we establish some new supercongruences motivated by the well-known fact $\lim_{n\to\infty}(1+1/n)^n=e$. Let $p>3$ be a prime. We prove that $$\sum_{k=0}^{p-1}\binom{-1/(p+1)}k^{p+1}\equiv 0\ \pmod{p^5}\ \ \ \mbox{and}\ \ \ \sum_{k=0}^{p-1}\binom{1/(p-1)}k^{p-1}\equiv \frac{2}{3}p^4B_{p-3}\ \pmod{p^5},$$ where $B_0,B_1,B_2,\ldots$ are Bernoulli numbers. We also show that for any $a\in\mathbb Z$ with $p\nmid a$ we have $$\sum_{k=1}^{p-1}\frac1k\left(1+\frac ak\right)^k\equiv -1\pmod{p}\ \ \ \mbox{and}\ \ \ \sum_{k=1}^{p-1}\frac1{k^2}\left(1+\frac ak\right)^k\equiv 1+\frac 1{2a}\pmod{p}.$$
Related articles: Most relevant | Search more
arXiv:math/0608328 [math.NT] (Published 2006-08-14)
Fleck quotients and Bernoulli numbers
arXiv:1706.06618 [math.NT] (Published 2017-06-20)
Supercongruences for Bernoulli numbers of polynomial index
arXiv:2204.10132 [math.NT] (Published 2022-04-21)
Supercongruences for sums involving $\binom ak^m$