arXiv:1906.03010 [math.FA]AbstractReferencesReviewsResources
Stability of Euler-Lagrange type cubic functional equations in quasi-Banach spaces
Wutiphol Sintunavarat, Nguyen Van Dung, Anurak Thanyacharoen
Published 2019-06-07Version 1
In this paper, we study the generalized Hyers-Ulam stability of Euler-Lagrange type cubic functional equation of the form \begin{align*} 2mf(x + my) + 2f(mx - y) = (m^3 + m)[f(x+ y) + f(x - y)] + 2(m^4 - 1)f(y) \end{align*} for all $x,y \in X$, where $m$ is a fixed scalar such that $m \neq 0,1$, and $f$ is a map from a quasi-normed space $X$ to a quasi-Banach space $Y$ over the same field with $X$ by applying the alternative fixed point theorem.
Categories: math.FA
Related articles: Most relevant | Search more
On the minimal space problem and a new result on existence of basic sequences in quasi-Banach spaces
arXiv:2210.10710 [math.FA] (Published 2022-10-19)
On quasi-Banach spaces which are 'dual' to Banach spaces
arXiv:2004.01128 [math.FA] (Published 2020-04-02)
A note on partially-greedy bases in quasi-Banach spaces