{ "id": "1906.03010", "version": "v1", "published": "2019-06-07T11:08:43.000Z", "updated": "2019-06-07T11:08:43.000Z", "title": "Stability of Euler-Lagrange type cubic functional equations in quasi-Banach spaces", "authors": [ "Wutiphol Sintunavarat", "Nguyen Van Dung", "Anurak Thanyacharoen" ], "categories": [ "math.FA" ], "abstract": "In this paper, we study the generalized Hyers-Ulam stability of Euler-Lagrange type cubic functional equation of the form \\begin{align*} 2mf(x + my) + 2f(mx - y) = (m^3 + m)[f(x+ y) + f(x - y)] + 2(m^4 - 1)f(y) \\end{align*} for all $x,y \\in X$, where $m$ is a fixed scalar such that $m \\neq 0,1$, and $f$ is a map from a quasi-normed space $X$ to a quasi-Banach space $Y$ over the same field with $X$ by applying the alternative fixed point theorem.", "revisions": [ { "version": "v1", "updated": "2019-06-07T11:08:43.000Z" } ], "analyses": { "keywords": [ "euler-lagrange type cubic functional equation", "quasi-banach space", "generalized hyers-ulam stability", "alternative fixed point theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }