arXiv Analytics

Sign in

arXiv:1901.07280 [math.NT]AbstractReferencesReviewsResources

On the mean value of the magnitude of an exponential sum involving the divisor function

Mayank Pandey

Published 2019-01-22Version 1

We obtain tight bounds on the L^1 norm of the exponential sum $M(\alpha) = \sum_{n\le X}\tau(n)e(n\alpha)$ where $\tau(n) = \sum_{d|n} 1$ is the divisor function. In particular, we show that it is $\gg \sqrt{X}\log X$.

Comments: 8 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2404.04747 [math.NT] (Published 2024-04-06)
The $L^1$ mean of the exponential sum of the divisor function
arXiv:1704.05953 [math.NT] (Published 2017-04-19)
On the $L^1$ norm of an exponential sum involving the divisor function
arXiv:1807.07341 [math.NT] (Published 2018-07-19)
Moments of an exponential sum related to the divisor function