{ "id": "1901.07280", "version": "v1", "published": "2019-01-22T12:14:03.000Z", "updated": "2019-01-22T12:14:03.000Z", "title": "On the mean value of the magnitude of an exponential sum involving the divisor function", "authors": [ "Mayank Pandey" ], "comment": "8 pages", "categories": [ "math.NT" ], "abstract": "We obtain tight bounds on the L^1 norm of the exponential sum $M(\\alpha) = \\sum_{n\\le X}\\tau(n)e(n\\alpha)$ where $\\tau(n) = \\sum_{d|n} 1$ is the divisor function. In particular, we show that it is $\\gg \\sqrt{X}\\log X$.", "revisions": [ { "version": "v1", "updated": "2019-01-22T12:14:03.000Z" } ], "analyses": { "keywords": [ "exponential sum", "divisor function", "mean value" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }