arXiv Analytics

Sign in

arXiv:2404.04747 [math.NT]AbstractReferencesReviewsResources

The $L^1$ mean of the exponential sum of the divisor function

Tomos Parry

Published 2024-04-06Version 1

We give a relatively simple proof that \[ \int _0^1\left |\sum _{n\leq x}d(n)e(n\alpha )\right |d\alpha \asymp \sqrt x.\]

Related articles: Most relevant | Search more
arXiv:1704.05953 [math.NT] (Published 2017-04-19)
On the $L^1$ norm of an exponential sum involving the divisor function
arXiv:1807.07341 [math.NT] (Published 2018-07-19)
Moments of an exponential sum related to the divisor function
arXiv:1901.07280 [math.NT] (Published 2019-01-22)
On the mean value of the magnitude of an exponential sum involving the divisor function