arXiv:1901.04802 [math.CO]AbstractReferencesReviewsResources
Star-critical Ramsey numbers for cycles versus the complete graph on 5 vertices
Published 2019-01-15Version 1
Let $G$, $H$ and $K$ represent three graphs without loops or parallel edges and $n$ represent an integer. Given any red blue coloring of the edges of $G$, we say that $K \rightarrow (G,H)$, if there exists red copy of $G$ in $K$ or a blue copy of $H$ in $K$. The Ramsey number $r(G, H)$ is defined as $\min\{n \mid K_n\rightarrow (G,H)\}$. Likewise, the star-critical Ramsey number $r_*(H, G)$ is defined $\min\{k \mid K_{r(G,H)-1} \sqcup K_{1,k} \rightarrow (H, G) \}$. When $n >6$, in this paper we show that $r_*(C_n,K_5)=3n-1$.
Comments: 13 pages, 7 figures
Categories: math.CO
Related articles: Most relevant | Search more
arXiv:1303.2951 [math.CO] (Published 2013-03-12)
The Erdős-Hajnal conjecture for rainbow triangles
arXiv:1905.11380 [math.CO] (Published 2019-05-25)
On Star-critical (K1,n,K1,m + e) Ramsey numbers
Decompositions of complete graphs into cycles of arbitrary lengths