{ "id": "1901.04802", "version": "v1", "published": "2019-01-15T13:06:27.000Z", "updated": "2019-01-15T13:06:27.000Z", "title": "Star-critical Ramsey numbers for cycles versus the complete graph on 5 vertices", "authors": [ "Chula J. Jayawardene" ], "comment": "13 pages, 7 figures", "categories": [ "math.CO" ], "abstract": "Let $G$, $H$ and $K$ represent three graphs without loops or parallel edges and $n$ represent an integer. Given any red blue coloring of the edges of $G$, we say that $K \\rightarrow (G,H)$, if there exists red copy of $G$ in $K$ or a blue copy of $H$ in $K$. The Ramsey number $r(G, H)$ is defined as $\\min\\{n \\mid K_n\\rightarrow (G,H)\\}$. Likewise, the star-critical Ramsey number $r_*(H, G)$ is defined $\\min\\{k \\mid K_{r(G,H)-1} \\sqcup K_{1,k} \\rightarrow (H, G) \\}$. When $n >6$, in this paper we show that $r_*(C_n,K_5)=3n-1$.", "revisions": [ { "version": "v1", "updated": "2019-01-15T13:06:27.000Z" } ], "analyses": { "subjects": [ "05D10", "05C38" ], "keywords": [ "star-critical ramsey number", "complete graph", "parallel edges", "blue copy", "red copy" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }