arXiv:1905.11380 [math.CO]AbstractReferencesReviewsResources
On Star-critical (K1,n,K1,m + e) Ramsey numbers
C. J. Jayawardene, J. N. Senadheera, K. A. S. N. Fernando, W. C. W Navaratna
Published 2019-05-25Version 1
Let $K_n$ denote the complete graph on $n$ vertices and $G, H$ be finite graphs without loops or multiple edges. If for every red/blue colouring of edges of the complete graph $K_n$, there exists a red copy of $G$, or a blue copy of $H$, we will say that $K_n\rightarrow (G,H)$. The Ramsey number $r(G, H)$ is the smallest positive integer $n$ such that $K_{n} \rightarrow (G, H)$. Star-critical Ramsey number $r_*(G, H)$ is defined as the largest value of $k$ such that $K_{r(G,H)-1} \sqcup K_{1,k} \rightarrow (G, H)$. In this paper, we will find $r_*(K_{1,n}, K_{1,m}+e)$ for all $n,m \geq 3$.
Comments: 8 pages, 5 figures
Categories: math.CO
Related articles: Most relevant | Search more
Ramsey for complete graphs with dropped cliques
Spectral characterizations of almost complete graphs
arXiv:1010.1455 [math.CO] (Published 2010-10-07)
Nim on the Complete Graph