arXiv:1901.00440 [math.CO]AbstractReferencesReviewsResources
On a question of Sidorenko
D. Cherkashin, F. Petrov, V. Sokolov
Published 2018-12-20Version 1
For a positive integer $n>1$ denote by $\omega(n)$ the maximal possible number $k$ of different functions $f_1,\dots,f_k:\mathbb{Z}/n\mathbb{Z}\mapsto \mathbb{Z}/n\mathbb{Z}$ such that each function $f_i-f_j,i<j$, is bijective. Recently A. Sidorenko conjectured that $\omega(n)$ equals to the minimal prime divisor of $n$. We disprove it for $n=15,21,27$ by several counterexamples found by computer.
Categories: math.CO
Related articles: Most relevant | Search more
New Counterexamples for Sums-Differences
Counterexamples of the conjecture on roots of Ehrhart polynomials
Highly arc-transitive digraphs -- counterexamples and structure