arXiv Analytics

Sign in

arXiv:1901.00440 [math.CO]AbstractReferencesReviewsResources

On a question of Sidorenko

D. Cherkashin, F. Petrov, V. Sokolov

Published 2018-12-20Version 1

For a positive integer $n>1$ denote by $\omega(n)$ the maximal possible number $k$ of different functions $f_1,\dots,f_k:\mathbb{Z}/n\mathbb{Z}\mapsto \mathbb{Z}/n\mathbb{Z}$ such that each function $f_i-f_j,i<j$, is bijective. Recently A. Sidorenko conjectured that $\omega(n)$ equals to the minimal prime divisor of $n$. We disprove it for $n=15,21,27$ by several counterexamples found by computer.

Related articles: Most relevant | Search more
arXiv:1404.3745 [math.CO] (Published 2014-04-14, updated 2014-10-03)
New Counterexamples for Sums-Differences
arXiv:1106.4633 [math.CO] (Published 2011-06-23, updated 2011-06-28)
Counterexamples of the conjecture on roots of Ehrhart polynomials
arXiv:1110.2945 [math.CO] (Published 2011-10-13, updated 2013-10-10)
Highly arc-transitive digraphs -- counterexamples and structure