{ "id": "1901.00440", "version": "v1", "published": "2018-12-20T15:18:33.000Z", "updated": "2018-12-20T15:18:33.000Z", "title": "On a question of Sidorenko", "authors": [ "D. Cherkashin", "F. Petrov", "V. Sokolov" ], "categories": [ "math.CO" ], "abstract": "For a positive integer $n>1$ denote by $\\omega(n)$ the maximal possible number $k$ of different functions $f_1,\\dots,f_k:\\mathbb{Z}/n\\mathbb{Z}\\mapsto \\mathbb{Z}/n\\mathbb{Z}$ such that each function $f_i-f_j,i