arXiv Analytics

Sign in

arXiv:1106.4633 [math.CO]AbstractReferencesReviewsResources

Counterexamples of the conjecture on roots of Ehrhart polynomials

Akihiro Higashitani

Published 2011-06-23, updated 2011-06-28Version 2

An outstanding conjecture on roots of Ehrhart polynomials says that all roots $\alpha$ of the Ehrhart polynomial of an integral convex polytope of dimension $d$ satisfy $-d \leq \Re(\alpha) \leq d-1$. In this paper, we suggest some counterexamples of this conjecture.

Related articles: Most relevant | Search more
arXiv:1604.02505 [math.CO] (Published 2016-04-09)
Flat $δ$-vectors and their Ehrhart polynomials
arXiv:1404.3745 [math.CO] (Published 2014-04-14, updated 2014-10-03)
New Counterexamples for Sums-Differences
arXiv:1506.00467 [math.CO] (Published 2015-06-01)
Negative coefficients of Ehrhart polynomials