{ "id": "1106.4633", "version": "v2", "published": "2011-06-23T05:45:02.000Z", "updated": "2011-06-28T05:16:46.000Z", "title": "Counterexamples of the conjecture on roots of Ehrhart polynomials", "authors": [ "Akihiro Higashitani" ], "comment": "6 pages", "categories": [ "math.CO" ], "abstract": "An outstanding conjecture on roots of Ehrhart polynomials says that all roots $\\alpha$ of the Ehrhart polynomial of an integral convex polytope of dimension $d$ satisfy $-d \\leq \\Re(\\alpha) \\leq d-1$. In this paper, we suggest some counterexamples of this conjecture.", "revisions": [ { "version": "v2", "updated": "2011-06-28T05:16:46.000Z" } ], "analyses": { "subjects": [ "52B20", "52B12" ], "keywords": [ "counterexamples", "integral convex polytope", "ehrhart polynomials says", "outstanding conjecture" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.4633H" } } }