arXiv Analytics

Sign in

arXiv:1604.02505 [math.CO]AbstractReferencesReviewsResources

Flat $δ$-vectors and their Ehrhart polynomials

Takayuki Hibi, Akiyoshi Tsuchiya

Published 2016-04-09Version 1

We call the $\delta$-vector of an integral convex polytope of dimension $d$ flat if the $\delta$-vector forms $(1,0,\ldots,0,a,\ldots,a,0,\ldots,0)$, where $a \geq 1$. In this paper, we give the complete characterization of possible flat $\delta$-vectors. Moreover, for an integral convex polytope $\mathcal{P} \subset \mathbb{R}^d$ of dimension $d$, we let $i(\mathcal{P},n)=|n\mathcal{P} \cap \mathbb{Z}^N|$ and $\ i^*(\mathcal{P},n)=|n(\mathcal{P} \setminus \partial \mathcal{P}) \cap \mathbb{Z}^N|.$ By this characterization, we show that for any $d \geq 1$ and for any $k,\ell \geq 0$ with $k+\ell \leq d-1$, there exist integral convex polytopes $\mathcal{P}$ and $\mathcal{Q}$ of dimension $d$ such that (i) For $t=1,\ldots,k$, we have $i(\mathcal{P},t)=i(\mathcal{Q},t),$ (ii) For $t=1,\ldots,\ell$, we have $i^*(\mathcal{P},t)=i^*(\mathcal{Q},t)$ and (iii) $i(\mathcal{P},k+1) \neq i(\mathcal{Q},k+1)$ and $i^*(\mathcal{P},\ell+1)\neq i^*(\mathcal{Q},\ell+1).$

Related articles: Most relevant | Search more
arXiv:1711.09962 [math.CO] (Published 2017-11-27)
On positivity of Ehrhart polynomials
arXiv:1804.00208 [math.CO] (Published 2018-03-31, updated 2018-06-05)
Binomial Inequalities of Chromatic, Flow, and Ehrhart Polynomials
arXiv:1107.4862 [math.CO] (Published 2011-07-25, updated 2012-10-11)
Ehrhart polynomials of integral simplices with prime volumes