{ "id": "1604.02505", "version": "v1", "published": "2016-04-09T01:12:51.000Z", "updated": "2016-04-09T01:12:51.000Z", "title": "Flat $δ$-vectors and their Ehrhart polynomials", "authors": [ "Takayuki Hibi", "Akiyoshi Tsuchiya" ], "comment": "7 pages", "categories": [ "math.CO" ], "abstract": "We call the $\\delta$-vector of an integral convex polytope of dimension $d$ flat if the $\\delta$-vector forms $(1,0,\\ldots,0,a,\\ldots,a,0,\\ldots,0)$, where $a \\geq 1$. In this paper, we give the complete characterization of possible flat $\\delta$-vectors. Moreover, for an integral convex polytope $\\mathcal{P} \\subset \\mathbb{R}^d$ of dimension $d$, we let $i(\\mathcal{P},n)=|n\\mathcal{P} \\cap \\mathbb{Z}^N|$ and $\\ i^*(\\mathcal{P},n)=|n(\\mathcal{P} \\setminus \\partial \\mathcal{P}) \\cap \\mathbb{Z}^N|.$ By this characterization, we show that for any $d \\geq 1$ and for any $k,\\ell \\geq 0$ with $k+\\ell \\leq d-1$, there exist integral convex polytopes $\\mathcal{P}$ and $\\mathcal{Q}$ of dimension $d$ such that (i) For $t=1,\\ldots,k$, we have $i(\\mathcal{P},t)=i(\\mathcal{Q},t),$ (ii) For $t=1,\\ldots,\\ell$, we have $i^*(\\mathcal{P},t)=i^*(\\mathcal{Q},t)$ and (iii) $i(\\mathcal{P},k+1) \\neq i(\\mathcal{Q},k+1)$ and $i^*(\\mathcal{P},\\ell+1)\\neq i^*(\\mathcal{Q},\\ell+1).$", "revisions": [ { "version": "v1", "updated": "2016-04-09T01:12:51.000Z" } ], "analyses": { "subjects": [ "52B05", "52B20" ], "keywords": [ "integral convex polytope", "ehrhart polynomials", "complete characterization", "vector forms" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160402505H" } } }