arXiv Analytics

Sign in

arXiv:1811.09948 [math.RT]AbstractReferencesReviewsResources

The Automorphisms group of a Current Lie algebra

Jesús Alonso Ochoa Arango, Nadina Elizabeth Rojas

Published 2018-11-25Version 1

Let $\mathfrak{g}$ be a finite dimensional complex Lie algebra and let $A$ be a finite dimensional complex, associative and commutative algebra with unit. We describe the structure of the derivation Lie algebra of the current Lie algebra $\mathfrak{g}_A= \mathfrak{g} \otimes A$, denoted by $\operatorname{Der}(\mathfrak{g}_A)$. Furthermore, we obtain the Levi decomposition of $\operatorname{Der}(\mathfrak{g}_A)$. As a consequence of the last result, if $\mathfrak{h}_m$ is the Heisenberg Lie algebra of dimension $2 m + 1$, we obtain a faithful representation of $\operatorname{Der}(\mathfrak{h}_{m,k})$ of the current truncated Heisenberg Lie algebra $\mathfrak{h}_{m,k}= \mathfrak{h}_m \otimes \mathbb{C}[t]/ (t^{k + 1})$ for all positive integer $k$.

Related articles: Most relevant | Search more
arXiv:1904.12504 [math.RT] (Published 2019-04-29)
Cuspidal modules for the derivation Lie algebra over a rational quantum torus
arXiv:1409.5207 [math.RT] (Published 2014-09-18)
Whittaker modules for the derivation Lie algebra of torus with two variables
arXiv:1504.03863 [math.RT] (Published 2015-04-15)
New realization of cyclotomic $q$-Schur algebras I