arXiv:1409.5207 [math.RT]AbstractReferencesReviewsResources
Whittaker modules for the derivation Lie algebra of torus with two variables
Published 2014-09-18Version 1
Let $\mathcal{L}$ be the derivation Lie algebra of ${\mathbb C}[t_1^{\pm 1},t_2^{\pm 1}]$. Given a triangle decomposition $\mathcal{L} =\mathcal{L}^{+}\oplus\mathfrak{h}\oplus\mathcal{L}^{-}$, we define a nonsingular Lie algebra homomorphism $\psi:\mathcal{L}^{+}\rightarrow\mathbb{C}$ and the universal Whittaker $\mathcal{L}$-module $W_{\psi}$ of type $\psi$. We obtain all Whittaker vectors and submodules of $W_{\psi}$, and all simple Whittaker $\mathcal{L}$-modules of type $\psi$.
Comments: 14 pages
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:2409.03159 [math.RT] (Published 2024-09-05)
Whittaker modules for a subalgebra of N=2 superconformal algebra
arXiv:2310.06669 [math.RT] (Published 2023-10-10)
Yangians, mirabolic subalgebras, and Whittaker vectors
arXiv:1409.5717 [math.RT] (Published 2014-09-19)
Extension fullness of the categories of Gelfand-Zeitlin and Whittaker modules