{ "id": "1409.5207", "version": "v1", "published": "2014-09-18T07:04:55.000Z", "updated": "2014-09-18T07:04:55.000Z", "title": "Whittaker modules for the derivation Lie algebra of torus with two variables", "authors": [ "Haifeng Lian", "Xiufu Zhang" ], "comment": "14 pages", "categories": [ "math.RT" ], "abstract": "Let $\\mathcal{L}$ be the derivation Lie algebra of ${\\mathbb C}[t_1^{\\pm 1},t_2^{\\pm 1}]$. Given a triangle decomposition $\\mathcal{L} =\\mathcal{L}^{+}\\oplus\\mathfrak{h}\\oplus\\mathcal{L}^{-}$, we define a nonsingular Lie algebra homomorphism $\\psi:\\mathcal{L}^{+}\\rightarrow\\mathbb{C}$ and the universal Whittaker $\\mathcal{L}$-module $W_{\\psi}$ of type $\\psi$. We obtain all Whittaker vectors and submodules of $W_{\\psi}$, and all simple Whittaker $\\mathcal{L}$-modules of type $\\psi$.", "revisions": [ { "version": "v1", "updated": "2014-09-18T07:04:55.000Z" } ], "analyses": { "keywords": [ "derivation lie algebra", "whittaker modules", "nonsingular lie algebra homomorphism", "universal whittaker", "whittaker vectors" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.5207L" } } }