{ "id": "1811.09948", "version": "v1", "published": "2018-11-25T05:43:50.000Z", "updated": "2018-11-25T05:43:50.000Z", "title": "The Automorphisms group of a Current Lie algebra", "authors": [ "Jesús Alonso Ochoa Arango", "Nadina Elizabeth Rojas" ], "comment": "14 pages", "categories": [ "math.RT", "math.AC", "math.RA" ], "abstract": "Let $\\mathfrak{g}$ be a finite dimensional complex Lie algebra and let $A$ be a finite dimensional complex, associative and commutative algebra with unit. We describe the structure of the derivation Lie algebra of the current Lie algebra $\\mathfrak{g}_A= \\mathfrak{g} \\otimes A$, denoted by $\\operatorname{Der}(\\mathfrak{g}_A)$. Furthermore, we obtain the Levi decomposition of $\\operatorname{Der}(\\mathfrak{g}_A)$. As a consequence of the last result, if $\\mathfrak{h}_m$ is the Heisenberg Lie algebra of dimension $2 m + 1$, we obtain a faithful representation of $\\operatorname{Der}(\\mathfrak{h}_{m,k})$ of the current truncated Heisenberg Lie algebra $\\mathfrak{h}_{m,k}= \\mathfrak{h}_m \\otimes \\mathbb{C}[t]/ (t^{k + 1})$ for all positive integer $k$.", "revisions": [ { "version": "v1", "updated": "2018-11-25T05:43:50.000Z" } ], "analyses": { "subjects": [ "17B10", "17B30", "17B40", "17B45" ], "keywords": [ "current lie algebra", "automorphisms group", "finite dimensional complex lie algebra", "current truncated heisenberg lie algebra", "derivation lie algebra" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }