arXiv:1810.06817 [math.NT]AbstractReferencesReviewsResources
On the Diophantine equation $f(x)=2f(y)$
Published 2018-10-16Version 1
Let $f(x)=x^{2}(x^{2}-1)(x^{2}-2)(x^{2}-3).$ We prove that the Diophantine equation $ f(x)=2f(y)$ has no solutions in positive integers $x$ and $y$, except $(x, y)=(1, 1)$.
Related articles: Most relevant | Search more
arXiv:1112.5986 [math.NT] (Published 2011-12-27)
The Diophantine Equation x^{2}+11^{m}=y^{n}
On the Diophantine equation N X^2 + 2^L 3^M = Y^N
arXiv:1112.5984 [math.NT] (Published 2011-12-27)
A p-adic look at the Diophantine equation x^{2}+11^{2k}=y^{n}