arXiv Analytics

Sign in

arXiv:1810.06817 [math.NT]AbstractReferencesReviewsResources

On the Diophantine equation $f(x)=2f(y)$

Sanjay Bhatter, Richa Sharma

Published 2018-10-16Version 1

Let $f(x)=x^{2}(x^{2}-1)(x^{2}-2)(x^{2}-3).$ We prove that the Diophantine equation $ f(x)=2f(y)$ has no solutions in positive integers $x$ and $y$, except $(x, y)=(1, 1)$.

Comments: 7 pages
Categories: math.NT
Subjects: 11D45, 11D41, 11D61
Related articles: Most relevant | Search more
arXiv:1112.5986 [math.NT] (Published 2011-12-27)
The Diophantine Equation x^{2}+11^{m}=y^{n}
arXiv:1304.6413 [math.NT] (Published 2013-04-23, updated 2014-04-17)
On the Diophantine equation N X^2 + 2^L 3^M = Y^N
arXiv:1112.5984 [math.NT] (Published 2011-12-27)
A p-adic look at the Diophantine equation x^{2}+11^{2k}=y^{n}