arXiv Analytics

Sign in

arXiv:1112.5986 [math.NT]AbstractReferencesReviewsResources

The Diophantine Equation x^{2}+11^{m}=y^{n}

Gokhan Soydan, Musa Demirci, Ismail Naci Cangul

Published 2011-12-27Version 1

The object of this paper is to give a new proof of all the solutions of the Diophantine equation x^2+11^m=y^n; in positive integers x, y with odd m>1 and n>=3.

Comments: 6 pages
Journal: Advanced Studies in Contemporary Mathematics, Vol.19 , No.2, (2009), 183-188
Categories: math.NT
Subjects: 11D61, 11Y50
Related articles: Most relevant | Search more
arXiv:math/0605227 [math.NT] (Published 2006-05-09)
On the Diophantine equation $x^2+q^{2m}=2y^p$
arXiv:1810.06817 [math.NT] (Published 2018-10-16)
On the Diophantine equation $f(x)=2f(y)$
arXiv:1006.1196 [math.NT] (Published 2010-06-07)
The Diophantine Equation $x^4 + 2 y^4 = z^4 + 4 w^4$---a number of improvements