arXiv:1809.09957 [math.FA]AbstractReferencesReviewsResources
Isomorphisms between spaces of Lipschitz functions
Leandro Candido, Marek Cúth, Michal Doucha
Published 2018-09-26Version 1
We develop tools for proving isomorphisms of normed spaces of Lipschitz functions over various doubling metric spaces and Banach spaces. In particular, we show that $\operatorname{Lip}_0(\mathbb{Z}^d)\simeq\operatorname{Lip}_0(\mathbb{R}^d)$, for all $d\in\mathbb{N}$. More generally, we e.g. show that $\operatorname{Lip}_0(\Gamma)\simeq \operatorname{Lip}_0(G)$, where $\Gamma$ is from a large class of finitely generated nilpotent groups and $G$ is its Mal'cev closure; or that $\operatorname{Lip}_0(\ell_p)\simeq\operatorname{Lip}_0(L_p)$, for all $1\leq p<\infty$. We leave a large area for further possible research.
Comments: 27 pages, no figures
Related articles: Most relevant | Search more
arXiv:1712.06315 [math.FA] (Published 2017-12-18)
Lusin-type approximation of Sobolev by Lipschitz functions, in Gaussian and $RCD(K,\infty)$ spaces
arXiv:math/0609535 [math.FA] (Published 2006-09-19)
Extension of Lipschitz Functions Defined on Metric Subspaces of Homogeneous Type
arXiv:2311.03119 [math.FA] (Published 2023-11-06)
Yet another proof of the density in energy of Lipschitz functions