arXiv:math/0609535 [math.FA]AbstractReferencesReviewsResources
Extension of Lipschitz Functions Defined on Metric Subspaces of Homogeneous Type
Published 2006-09-19Version 1
If a metric subspace $M^{o}$ of an arbitrary metric space $M$ carries a doubling measure $\mu$, then there is a simultaneous linear extension of all Lipschitz functions on $M^{o}$ ranged in a Banach space to those on $M$. Moreover, the norm of this linear operator is controlled by logarithm of the doubling constant of $\mu$.
Comments: 12 pages
Journal: Rev. Mat. Complut., 19 (2006), no. 2, 347-359
Keywords: lipschitz functions, metric subspace, homogeneous type, arbitrary metric space, linear operator
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1802.02722 [math.FA] (Published 2018-02-08)
B-metric spaces, fixed points and Lipschitz functions
arXiv:1712.06315 [math.FA] (Published 2017-12-18)
Lusin-type approximation of Sobolev by Lipschitz functions, in Gaussian and $RCD(K,\infty)$ spaces
arXiv:1809.09957 [math.FA] (Published 2018-09-26)
Isomorphisms between spaces of Lipschitz functions