{ "id": "1809.09957", "version": "v1", "published": "2018-09-26T13:12:23.000Z", "updated": "2018-09-26T13:12:23.000Z", "title": "Isomorphisms between spaces of Lipschitz functions", "authors": [ "Leandro Candido", "Marek CĂșth", "Michal Doucha" ], "comment": "27 pages, no figures", "categories": [ "math.FA", "math.MG" ], "abstract": "We develop tools for proving isomorphisms of normed spaces of Lipschitz functions over various doubling metric spaces and Banach spaces. In particular, we show that $\\operatorname{Lip}_0(\\mathbb{Z}^d)\\simeq\\operatorname{Lip}_0(\\mathbb{R}^d)$, for all $d\\in\\mathbb{N}$. More generally, we e.g. show that $\\operatorname{Lip}_0(\\Gamma)\\simeq \\operatorname{Lip}_0(G)$, where $\\Gamma$ is from a large class of finitely generated nilpotent groups and $G$ is its Mal'cev closure; or that $\\operatorname{Lip}_0(\\ell_p)\\simeq\\operatorname{Lip}_0(L_p)$, for all $1\\leq p<\\infty$. We leave a large area for further possible research.", "revisions": [ { "version": "v1", "updated": "2018-09-26T13:12:23.000Z" } ], "analyses": { "keywords": [ "lipschitz functions", "isomorphisms", "large area", "malcev closure", "doubling metric spaces" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }