arXiv:1806.01487 [math.PR]AbstractReferencesReviewsResources
Berry-Esseen bound for the Parameter Estimation of Fractional Ornstein-Uhlenbeck Processes
Yong Chen, Nenghui Kuang, Ying Li
Published 2018-06-05Version 1
For the least squares estimator $\hat{\theta}$ for the drift parameter $\theta$ of an Ornstein-Uhlenbeck process driven by fractional Brownian motion with Hurst index $H\in [\frac12,\frac34]$, we show the Berry-Esseen bound of the Kolmogorov distance between Gaussian random variable and $\sqrt{T}(\hat{\theta}_T-\theta) $ with $H\in[\frac12,\,\frac34)$, ( $\sqrt{\frac{T}{\log T}}(\hat{\theta}_T-\theta)$ with $H=\frac{3}{4}$ respectively) is $\frac{1}{\sqrt{T^{3-4H}}}$, ( $\frac{1}{\log T}$ respectively). The strategy is to exploit Corollary 1 of Kim and Park [Journal of Multivariate Analysis 155, P284-304.(2017)].
Comments: 9 pages
Categories: math.PR
Related articles: Most relevant | Search more
arXiv:2210.00420 [math.PR] (Published 2022-10-02)
An Improved Berry-Esseen Bound of Least Squares Estimation for Fractional Ornstein-Uhlenbeck Processes
arXiv:math/0606214 [math.PR] (Published 2006-06-09)
Flow properties of differential equations driven by fractional Brownian motion
arXiv:1102.5491 [math.PR] (Published 2011-02-27)
Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-ergodic Case