{ "id": "1806.01487", "version": "v1", "published": "2018-06-05T04:10:08.000Z", "updated": "2018-06-05T04:10:08.000Z", "title": "Berry-Esseen bound for the Parameter Estimation of Fractional Ornstein-Uhlenbeck Processes", "authors": [ "Yong Chen", "Nenghui Kuang", "Ying Li" ], "comment": "9 pages", "categories": [ "math.PR" ], "abstract": "For the least squares estimator $\\hat{\\theta}$ for the drift parameter $\\theta$ of an Ornstein-Uhlenbeck process driven by fractional Brownian motion with Hurst index $H\\in [\\frac12,\\frac34]$, we show the Berry-Esseen bound of the Kolmogorov distance between Gaussian random variable and $\\sqrt{T}(\\hat{\\theta}_T-\\theta) $ with $H\\in[\\frac12,\\,\\frac34)$, ( $\\sqrt{\\frac{T}{\\log T}}(\\hat{\\theta}_T-\\theta)$ with $H=\\frac{3}{4}$ respectively) is $\\frac{1}{\\sqrt{T^{3-4H}}}$, ( $\\frac{1}{\\log T}$ respectively). The strategy is to exploit Corollary 1 of Kim and Park [Journal of Multivariate Analysis 155, P284-304.(2017)].", "revisions": [ { "version": "v1", "updated": "2018-06-05T04:10:08.000Z" } ], "analyses": { "subjects": [ "60H07", "60F25", "62M09" ], "keywords": [ "fractional ornstein-uhlenbeck processes", "berry-esseen bound", "parameter estimation", "fractional brownian motion", "ornstein-uhlenbeck process driven" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }