arXiv:1102.5491 [math.PR]AbstractReferencesReviewsResources
Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-ergodic Case
Rachid Belfadli, Khalifa Es-Sebaiy, Youssef Ouknine
Published 2011-02-27Version 1
We consider the parameter estimation problem for the non-ergodic fractional Ornstein-Uhlenbeck process defined as $dX_t=\theta X_tdt+dB_t,\ t\geq0$, with a parameter $\theta>0$, where $B$ is a fractional Brownian motion of Hurst index $H\in(1/2,1)$. We study the consistency and the asymptotic distributions of the least squares estimator $\hat{\theta}_t$ of $\theta$ based on the observation $\{X_s,\ s\in[0,t]\}$ as $t\rightarrow\infty$.
Comments: 13 pages
Categories: math.PR
Related articles: Most relevant | Search more
arXiv:math/0310413 [math.PR] (Published 2003-10-26)
Unilateral Small Deviations for the Integral of Fractional Brownian Motion
On the connection between Molchan-Golosov and Mandelbrot-Van Ness representations of fractional Brownian motion
arXiv:0705.0135 [math.PR] (Published 2007-05-01)
Packing-Dimension Profiles and Fractional Brownian Motion