arXiv:1805.11855 [math.CA]AbstractReferencesReviewsResources
Rational extension of Newton diagram for the positivity of ${}_1F_2$ hypergeometric functions and Askey-Szegö problem
Yong-Kum Cho, Seok-Young Chung, Hera Yun
Published 2018-05-30Version 1
We present a rational extension of Newton diagram for the positivity of ${}_1F_2$ generalized hypergeometric functions. As an application, we give upper and lower bounds for the transcendental roots $\beta(\alpha)$ of \begin{align*} \int_0^{j_{\alpha, 2}} t^{-\beta} J_\alpha(t) dt = 0\qquad(-1<\alpha\le 1/2), \end{align*} where $j_{\alpha, 2}$ denotes the second positive zero of Bessel function $J_\alpha$.
Comments: 23 pages, 6 figures
Categories: math.CA
Related articles: Most relevant | Search more
arXiv:1801.02312 [math.CA] (Published 2018-01-08)
Newton diagram of positivity for ${}_1F_2$ generalized hypergeometric functions
arXiv:2102.04111 [math.CA] (Published 2021-02-08)
The Newton Polyhedron and positivity of ${}_2F_3$ hypergeometric functions
arXiv:1508.07615 [math.CA] (Published 2015-08-30)
Positivity and Fourier integrals over regular hexagon