arXiv:1508.07615 [math.CA]AbstractReferencesReviewsResources
Positivity and Fourier integrals over regular hexagon
Published 2015-08-30Version 1
Let $f \in L^1(\mathbb{R}^2)$ and let $\widehat f$ be its Fourier integral. We study summability of the partial integral $S_{\rho,\mathsf{H}}(x)=\int_{\{\|y\|_\mathsf{H} \le \rho\}} e^{i x\cdot y}\widehat f(y) dy$, where $\|y\|_\mathsf{H}$ denotes the uniform norm taken over the regular hexagonal domain. We prove that the Riesz $(R,\delta)$ means of the inverse Fourier integrals are nonnegative if and if $\delta \ge 2$. Moreover, we describe a class of $\|\cdot\|_\mathsf{H}$-radial functions that are positive definite on $\mathbb{R}^2$.
Categories: math.CA
Related articles: Most relevant | Search more
On the positivity of Riemann-Stieltjes integrals
arXiv:1705.03759 [math.CA] (Published 2017-05-06)
Extension of Vietoris' inequalities for positivity of trigonometric polynomials
arXiv:1901.03368 [math.CA] (Published 2019-01-03)
On Positivities of Certain q-Special Functions