{ "id": "1508.07615", "version": "v1", "published": "2015-08-30T18:48:21.000Z", "updated": "2015-08-30T18:48:21.000Z", "title": "Positivity and Fourier integrals over regular hexagon", "authors": [ "Yuan Xu" ], "categories": [ "math.CA" ], "abstract": "Let $f \\in L^1(\\mathbb{R}^2)$ and let $\\widehat f$ be its Fourier integral. We study summability of the partial integral $S_{\\rho,\\mathsf{H}}(x)=\\int_{\\{\\|y\\|_\\mathsf{H} \\le \\rho\\}} e^{i x\\cdot y}\\widehat f(y) dy$, where $\\|y\\|_\\mathsf{H}$ denotes the uniform norm taken over the regular hexagonal domain. We prove that the Riesz $(R,\\delta)$ means of the inverse Fourier integrals are nonnegative if and if $\\delta \\ge 2$. Moreover, we describe a class of $\\|\\cdot\\|_\\mathsf{H}$-radial functions that are positive definite on $\\mathbb{R}^2$.", "revisions": [ { "version": "v1", "updated": "2015-08-30T18:48:21.000Z" } ], "analyses": { "subjects": [ "42B08", "41A25", "41A63" ], "keywords": [ "positivity", "inverse fourier integrals", "regular hexagonal domain", "uniform norm taken", "partial integral" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }